Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 10, 2026
-
Free, publicly-accessible full text available May 19, 2026
-
Estimating the geometric median of a dataset is a robust counterpart to mean estimation, and is a fundamental problem in computational geometry. Recently, [HSU24] gave an (ε,δ)-differentially private algorithm obtaining an α-multiplicative approximation to the geometric median objective, 1n∑i∈[n]‖⋅−xi‖, given a dataset :={xi}i∈[n]⊂ℝd. Their algorithm requires n≳d‾‾√⋅1αε samples, which they prove is information-theoretically optimal. This result is surprising because its error scales with the \emph{effective radius} of (i.e., of a ball capturing most points), rather than the worst-case radius. We give an improved algorithm that obtains the same approximation quality, also using n≳d‾‾√⋅1αϵ samples, but in time O˜(nd+dα2). Our runtime is nearly-linear, plus the cost of the cheapest non-private first-order method due to [CLM+16]. To achieve our results, we use subsampling and geometric aggregation tools inspired by FriendlyCore [TCK+22] to speed up the "warm start" component of the [HSU24] algorithm, combined with a careful custom analysis of DP-SGD's sensitivity for the geometric median objective.more » « lessFree, publicly-accessible full text available May 26, 2026
-
Free, publicly-accessible full text available June 10, 2026
-
Recent work on supervised learning [GKR+22] defined the notion of omnipredictors, i.e., predictor functions p over features that are simultaneously competitive for minimizing a family of loss functions against a comparator class . Omniprediction requires approximating the Bayes-optimal predictor beyond the loss minimization paradigm, and has generated significant interest in the learning theory community. However, even for basic settings such as agnostically learning single-index models (SIMs), existing omnipredictor constructions require impractically-large sample complexities and runtimes, and output complex, highly-improper hypotheses. Our main contribution is a new, simple construction of omnipredictors for SIMs. We give a learner outputting an omnipredictor that is ε-competitive on any matching loss induced by a monotone, Lipschitz link function, when the comparator class is bounded linear predictors. Our algorithm requires ≈ε−4 samples and runs in nearly-linear time, and its sample complexity improves to ≈ε−2 if link functions are bi-Lipschitz. This significantly improves upon the only prior known construction, due to [HJKRR18, GHK+23], which used ≳ε−10 samples. We achieve our construction via a new, sharp analysis of the classical Isotron algorithm [KS09, KKKS11] in the challenging agnostic learning setting, of potential independent interest. Previously, Isotron was known to properly learn SIMs in the realizable setting, as well as constant-factor competitive hypotheses under the squared loss [ZWDD24]. As they are based on Isotron, our omnipredictors are multi-index models with ≈ε−2 prediction heads, bringing us closer to the tantalizing goal of proper omniprediction for general loss families and comparators.more » « lessFree, publicly-accessible full text available January 22, 2026
-
Transformer models have been widely investigated in different domains by providing long-range dependency handling and global contextual awareness, driving the development of popular AI applications such as ChatGPT, Gemini, and Alexa. State Space Models (SSMs) have emerged as strong contenders in the field of sequential modeling, challenging the dominance of Transformers. SSMs incorporate a selective mechanism that allows for dynamic parameter adjustment based on input data, enhancing their performance. However, this mechanism also comes with increasing computational complexity and bandwidth demands, posing challenges for deployment on resource-constraint mobile devices. To address these challenges without sacrificing the accuracy of the selective mechanism, we propose a sparse learning framework that integrates architecture-aware compiler optimizations. We introduce an end-to-end solution–C 4 n kernel sparsity, which prunes n elements from every four contiguous weights, and develop a compiler-based acceleration solution to ensure execution efficiency for this sparsity on mobile devices. Based on the kernel sparsity, our framework generates optimized sparse models targeting specific sparsity or latency requirements for various model sizes. We further leverage pruned weights to compensate for the remaining weights, enhancing downstream task performance. For practical hardware acceleration, we propose C 4 n -specific optimizations combined with a layout transformation elimination strategy. This approach mitigates inefficiencies arising from fine-grained pruning in linear layers and improves performance across other operations. Experimental results demonstrate that our method achieves superior task performance compared to other semi-structured pruning methods and achieves up-to 7→ speedup compared to llama.cpp framework on mobile devices.more » « lessFree, publicly-accessible full text available April 1, 2026
-
In the recent literature on machine learning and decision making, calibration has emerged as a desirable and widely-studied statistical property of the outputs of binary prediction models. However, the algorithmic aspects of measuring model calibration have remained relatively less well-explored. Motivated by [BGHN23], which proposed a rigorous framework for measuring distances to calibration, we initiate the algorithmic study of calibration through the lens of property testing. We define the problem of calibration testing from samples where given n draws from a distribution on (predictions,binaryoutcomes), our goal is to distinguish between the case where is perfectly calibrated, and the case where is ε-far from calibration. We make the simple observation that the empirical smooth calibration linear program can be reformulated as an instance of minimum-cost flow on a highly-structured graph, and design an exact dynamic programming-based solver for it which runs in time O(nlog2(n)), and solves the calibration testing problem information-theoretically optimally in the same time. This improves upon state-of-the-art black-box linear program solvers requiring Ω(nω) time, where ω>2 is the exponent of matrix multiplication. We also develop algorithms for tolerant variants of our testing problem improving upon black-box linear program solvers, and give sample complexity lower bounds for alternative calibration measures to the one considered in this work. Finally, we present experiments showing the testing problem we define faithfully captures standard notions of calibration, and that our algorithms scale efficiently to accommodate large sample sizes.more » « less
-
The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural and functional aspects of the brain, encompassing the ramifications of diseases and developmental processes. However, prevailing methodologies, often focusing on synchronous BOLD signals from functional MRI (fMRI), may not capture directional influences among brain regions and rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks via an ordinary differential equation (ODE) model, which characterizes spatial-temporal brain dynamics. Our framework is validated on several clinical phenotype prediction tasks using two independent publicly available datasets (HCP and OASIS). The experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.more » « less
An official website of the United States government

Full Text Available